Parameter Estimation for Nonlinear Continuous- Time State-space Models from Sampled Data

نویسنده

  • C. Bohn
چکیده

The problem of parameter estimation for nonlinear state-space models is addressed. Two approaches to this problem are presented: (1) the state-augmentation approach, which consists of including the unknown system parameters in the state vector and estimating them through a state estimator, and (2) the prediction-error approach, which consists of tuning a predictor such that it will give optimal predictions and then recovering the system parameters from this optimum predictor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online State Space Model Parameter Estimation in Synchronous Machines

The purpose of this paper is to present a new approach based on the Least Squares Error method for estimating the unknown parameters of the nonlinear 3rd order synchronous generator model. The proposed method uses the mathematical relationships between the machine parameters and on-line input/output measurements to estimate the parameters of the nonlinear state space model. The field voltage is...

متن کامل

Bayesian Learning in Nonlinear State-Space Models

We describe Bayesian learning in nonlinear state-space models (NSSMs). NSSMs are a general method for the probabilistic modelling of sequences and time-series. They take the form of iterated maps on continuous state-spaces, and can have either discrete or continuous valued output functions. They are generalizations of the more well known state-space models such as Hidden Markov models (HMMs), a...

متن کامل

SDE - A program package for the simulation, optimal filtering and maximum likelihood estimation of nonlinear Stochastic Differential Equations

Continuous time models with sampled data possess several advantages over conventional time series and panel models (special issue 62:1, 2008, of Statistica Neerlandica). For example, data with unequal time intervals can be treated efficiently, since the dynamic model parameters of the system model are not affected by the measurement process. In the linear case, the nonlinear parameter restricti...

متن کامل

Continuous-Time Model Identification and State Estimation Using Non-Uniformly Sampled Data

This contribution reviews theory, algorithms, and validation results for system identification of continuous-time state-space models from finite inputoutput sequences. The algorithms developed are autoregressive methods, methods of subspace-based model identification and stochastic realization adapted to the continuous-time context. The resulting model can be decomposed into an input-output mod...

متن کامل

Model Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series

Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011